Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of Mo back contact porosity on co-evaporated Cu(In,Ga)Se2 thin film properties and related solar cell

Identifieur interne : 000A58 ( Main/Repository ); précédent : 000A57; suivant : 000A59

Influence of Mo back contact porosity on co-evaporated Cu(In,Ga)Se2 thin film properties and related solar cell

Auteurs : RBID : Pascal:13-0166332

Descripteurs français

English descriptors

Abstract

The present study aims at investigating the influence of Ar sputtering gas pressure on the properties of molybdenum back contact (deposited on soda-lime glass) and consequences on co-evaporated Cu(In,Ga)Se2 (CIGSe) absorber layer and related solar cell. Films 300 nm thick have been grown with argon pressure between 0.75 and 11.25 mTorr; these films have been characterized by several techniques showing that the increase of the sputtering pressure yields wider amorphous areas, containing oxygen and sodium, between the molybdenum grains, thus higher sheet resistance. The volume ratio of these amorphous areas is referenced to as "porosity". The structural and morphological properties of co-evaporated CIGSe have not been reliably observed influenced by the molybdenum porosity; the only noticeable change is the sodium content of the absorber, which increases with the porosity of the back contact. The impact of the amount of sodium on the device performance has been observed to be very important. On the one hand, as already reported, sodium is beneficial for the open-circuit voltage. On the other hand, a too high amount of sodium is detrimental for the fill factor (hindered shunt resistance), thus the cell efficiency; this latter observation is interpreted as a change in the grain boundary electrical properties.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0166332

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of Mo back contact porosity on co-evaporated Cu(In,Ga)Se
<sub>2</sub>
thin film properties and related solar cell</title>
<author>
<name sortKey="Bommersbach, P" uniqKey="Bommersbach P">P. Bommersbach</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Arzel, L" uniqKey="Arzel L">L. Arzel</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tomassini, M" uniqKey="Tomassini M">M. Tomassini</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gautron, E" uniqKey="Gautron E">E. Gautron</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Leyder, C" uniqKey="Leyder C">C. Leyder</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Saint-Gobain Recherche, 39 quai Lucien-Lefranc BP 135</s1>
<s2>93303 Aubervilliers</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Aubervilliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Urien, M" uniqKey="Urien M">M. Urien</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Saint-Gobain Recherche, 39 quai Lucien-Lefranc BP 135</s1>
<s2>93303 Aubervilliers</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Aubervilliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dupuy, D" uniqKey="Dupuy D">D. Dupuy</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Saint-Gobain Recherche, 39 quai Lucien-Lefranc BP 135</s1>
<s2>93303 Aubervilliers</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Aubervilliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barreau, N" uniqKey="Barreau N">N. Barreau</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0166332</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0166332 INIST</idno>
<idno type="RBID">Pascal:13-0166332</idno>
<idno type="wicri:Area/Main/Corpus">000E63</idno>
<idno type="wicri:Area/Main/Repository">000A58</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt.</title>
<title level="j" type="main">Progress in photovoltaics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Absorber</term>
<term>Amorphous material</term>
<term>Argon</term>
<term>Conversion rate</term>
<term>Copper selenides</term>
<term>Electrical characteristic</term>
<term>Fill factor</term>
<term>Gallium selenides</term>
<term>Gas pressure</term>
<term>Grain boundary</term>
<term>Indium selenides</term>
<term>Molybdenum</term>
<term>Open circuit voltage</term>
<term>Oxygen</term>
<term>Performance evaluation</term>
<term>Porosity</term>
<term>Porous material</term>
<term>Quaternary compound</term>
<term>Sheet resistivity</term>
<term>Shunt</term>
<term>Soda-lime glasses</term>
<term>Sodium</term>
<term>Solar cell</term>
<term>Thin film</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Porosité</term>
<term>Cellule solaire</term>
<term>Pression gaz</term>
<term>Verre sodocalcique</term>
<term>Absorbeur</term>
<term>Matériau absorbant</term>
<term>Matériau amorphe</term>
<term>Résistivité couche</term>
<term>Evaluation performance</term>
<term>Tension circuit ouvert</term>
<term>Facteur remplissage</term>
<term>Shunt</term>
<term>Taux conversion</term>
<term>Joint grain</term>
<term>Caractéristique électrique</term>
<term>Molybdène</term>
<term>Matériau poreux</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Couche mince</term>
<term>Argon</term>
<term>Oxygène</term>
<term>Sodium</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matériau amorphe</term>
<term>Molybdène</term>
<term>Oxygène</term>
<term>Sodium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present study aims at investigating the influence of Ar sputtering gas pressure on the properties of molybdenum back contact (deposited on soda-lime glass) and consequences on co-evaporated Cu(In,Ga)Se
<sub>2</sub>
(CIGSe) absorber layer and related solar cell. Films 300 nm thick have been grown with argon pressure between 0.75 and 11.25 mTorr; these films have been characterized by several techniques showing that the increase of the sputtering pressure yields wider amorphous areas, containing oxygen and sodium, between the molybdenum grains, thus higher sheet resistance. The volume ratio of these amorphous areas is referenced to as "porosity". The structural and morphological properties of co-evaporated CIGSe have not been reliably observed influenced by the molybdenum porosity; the only noticeable change is the sodium content of the absorber, which increases with the porosity of the back contact. The impact of the amount of sodium on the device performance has been observed to be very important. On the one hand, as already reported, sodium is beneficial for the open-circuit voltage. On the other hand, a too high amount of sodium is detrimental for the fill factor (hindered shunt resistance), thus the cell efficiency; this latter observation is interpreted as a change in the grain boundary electrical properties.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of Mo back contact porosity on co-evaporated Cu(In,Ga)Se
<sub>2</sub>
thin film properties and related solar cell</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOMMERSBACH (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ARZEL (L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TOMASSINI (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GAUTRON (E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEYDER (C.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>URIEN (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DUPUY (D.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BARREAU (N.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière B.P. 32229</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Saint-Gobain Recherche, 39 quai Lucien-Lefranc BP 135</s1>
<s2>93303 Aubervilliers</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>332-343</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000503768140080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0166332</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The present study aims at investigating the influence of Ar sputtering gas pressure on the properties of molybdenum back contact (deposited on soda-lime glass) and consequences on co-evaporated Cu(In,Ga)Se
<sub>2</sub>
(CIGSe) absorber layer and related solar cell. Films 300 nm thick have been grown with argon pressure between 0.75 and 11.25 mTorr; these films have been characterized by several techniques showing that the increase of the sputtering pressure yields wider amorphous areas, containing oxygen and sodium, between the molybdenum grains, thus higher sheet resistance. The volume ratio of these amorphous areas is referenced to as "porosity". The structural and morphological properties of co-evaporated CIGSe have not been reliably observed influenced by the molybdenum porosity; the only noticeable change is the sodium content of the absorber, which increases with the porosity of the back contact. The impact of the amount of sodium on the device performance has been observed to be very important. On the one hand, as already reported, sodium is beneficial for the open-circuit voltage. On the other hand, a too high amount of sodium is detrimental for the fill factor (hindered shunt resistance), thus the cell efficiency; this latter observation is interpreted as a change in the grain boundary electrical properties.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Porosité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Porosity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Porosidad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pression gaz</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Gas pressure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Presión gas</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Verre sodocalcique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Soda-lime glasses</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Absorbeur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Absorber</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Absorbente</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Matériau amorphe</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Amorphous material</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Material amorfo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Résistivité couche</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Sheet resistivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Resistividad capa</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Shunt</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Shunt</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Shunt</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Joint grain</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Grain boundary</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Limite grano</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Matériau poreux</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Porous material</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Material poroso</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>28</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>28</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>28</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Argon</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Argon</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Argón</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>30</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>30</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>30</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Sodio</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>147</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000A58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0166332
   |texte=   Influence of Mo back contact porosity on co-evaporated Cu(In,Ga)Se2 thin film properties and related solar cell
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024